The vibrational dependence of dissociative recombination: cross sections for N2+.

نویسنده

  • Steven L Guberman
چکیده

Theoretical ab initio calculations are reported of the cross sections for dissociative recombination of the lowest four excited vibrational levels of N2(+) at electron energies from 0.001 to 1.0 eV. Rydberg vibrational levels contributing to the cross section structures are identified as are dissociative channels contributing more than 10(-16) cm(2) to the total cross sections. In contrast to the prior study of v = 0 (S. L. Guberman, J. Chem. Phys. 137, 074309 (2012)), which showed 2(3)Πu to be the dominant dissociative channel, 4(3)Πu is dominant for v = 1. Both 2 and 4(3)Πu are major routes for dissociative recombination from v = 2-4. Other routes including 2(3)Σu(+), 3(3)Πu, 2(1)Πu, 2(3)Πg, 2(1)Σg(+), 1(1)Δg, and b('1)Σu(+) are significant in narrow energy ranges. The results show that minor dissociative routes, included here for N2(+), must be included in theoretical studies of other molecular ions (including the simplest ions H2(+) and H3(+)) if cross section agreement is to be found with future high resolution dissociative recombination experiments. The calculated predissociation lifetimes of the Rydberg resonances are used in a detailed comparison to two prior storage ring experiments in order to determine if the prior assumption of isotropic atomic angular distributions at "zero" electron energy is justified. The prior experimental assumption of comparable cross sections for v = 0-3 is shown to be the case at "zero" but not at nonzero electron energies. Circumstances are identified in which indirect recombination may be visualized as a firefly effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron-impact resonant vibrational excitation and dissociation processes involving vibrationally excited N2 molecules

Resonant vibrational excitation cross sections and the corresponding rate coefficients for electron–N2 collisions occurring through the N − 2 (X 2 g) resonant state are reviewed. New calculations are performed using accurate potential energy curves for the N2 electronic ground state, taken from the literature, and for the N2 resonant state, obtained from R-matrix calculations. The calculations ...

متن کامل

Role of excited core Rydberg states in dissociative recombination.

Intermediate states formed during the dissociative recombination of molecular ions with electrons can play significant roles in determining the magnitude of the total rate coefficient. These resonances are Rydberg states of two types, that is, they can have the ground or excited states of the ion as a core. Those with the excited cores have a fundamentally different excitation mechanism than th...

متن کامل

Low-energy electron collisions with CH3Br: the dependence of elastic scattering, vibrational excitation, and dissociative attachment on the initial vibrational energy

Using the laser photoelectron attachment (LPA) method at an energy width of 1–2 meV, the Br− yield due to dissociative electron attachment to the molecule CH3Br has been measured over the energy range 1–180 meV at a gas temperature of 600 K. The data clearly exhibit the vibrational Feshbach resonance predicted by Wilde et al. (2000 J. Phys. B: At. Mol. Opt. Phys. 33 5479) and associated with th...

متن کامل

Comparative studies of dissociative electron attachment to methyl halides

The dissociative electron attachment cross sections for the methyl halides vary in an enormous range from the virtually unmeasurable 10−23 cm2 for CH3Cl at room temperature to 10 −14 cm2 for CH3I. In this paper we supplement our previous studies by calculations of dissociative electron attachment to CH3Br and compare results for all methyl halides studied so far. The rate as a function of tempe...

متن کامل

Vibrational Feshbach resonances in uracil and thymine.

Sharp peaks in the dissociative electron attachment (DEA) cross sections of uracil and thymine at energies below 3 eV are assigned to vibrational Feshbach resonances (VFRs) arising from coupling between the dipole bound state and the temporary anion state associated with occupation of the lowest sigma* orbital. Three distinct vibrational modes are identified, and their presence as VFRs is consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 12  شماره 

صفحات  -

تاریخ انتشار 2013